The notes for the topics on this page can be found in the lecture 22 folder on Canvas.

R

To conduct conditional logistic regression in R you can use clogit() from the survival package. clogit() follows the same syntax as other linear models in R but includes a strata() argument where you specify the indicator for matching. R will also return odds ratios and 95% CIs for the model’s covariates if you save your model as an object and call summary().

library(tibble)
library(survival)

id <- function() {
    x <- vector("numeric")
    
    for (i in 1:17) {
      x <- append(x, rep(i, 2))
    }
    x
}

lbw <- tibble(
  pair_id = id(), 
  low = c(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 
          0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0), 
  lwt = c(130, 110, 120, 103, 110, 107, 102, 182, 105, 105, 100, 
          108, 130, 118, 94, 130, 138, 90, 89, 118, 190, 113, 130, 
          124, 120, 120, 130, 150, 142, 107, 102, 215, 105, 121)
)

lbw_model <- clogit(low ~ lwt + strata(pair_id), data = lbw)

summary(lbw_model)
## Call:
## coxph(formula = Surv(rep(1, 34L), low) ~ lwt + strata(pair_id), 
##     data = lbw, method = "exact")
## 
##   n= 34, number of events= 17 
## 
##          coef exp(coef)  se(coef)      z Pr(>|z|)
## lwt -0.005283  0.994731  0.011414 -0.463    0.643
## 
##     exp(coef) exp(-coef) lower .95 upper .95
## lwt    0.9947      1.005    0.9727     1.017
## 
## Concordance= 0.471  (se = 0.161 )
## Likelihood ratio test= 0.22  on 1 df,   p=0.6
## Wald test            = 0.21  on 1 df,   p=0.6
## Score (logrank) test = 0.22  on 1 df,   p=0.6

SAS

To conduct conditional logistic regression in SAS you the logistic procedure with the strata statement specified to indicate the matching variable.

title 'Lowbirth Example - 1:1 matching';
data LBW;
 input pairid id Age Low LWT Smoke HT UI @@;
 cards;
1 25 16 1 130 0 0 0 1 143 16 0 110 0 0 0
2 71 17 1 120 0 0 0 2 93 17 0 103 0 0 0
3 50 18 1 110 1 0 0 3 89 18 0 107 1 0 1
4 33 19 1 102 0 0 0 4 85 19 0 182 0 0 1
5 76 20 1 105 0 0 0 5 87 20 0 105 1 0 0
6 52 21 1 100 0 0 0 6 88 21 0 108 1 0 1
7 67 22 1 130 1 0 0 7 92 22 0 118 0 0 0
8 82 23 1 94 1 0 0 8 130 23 0 130 0 0 0
9 36 24 1 138 0 0 0 9 118 24 0 90 1 0 0
10 32 25 1 89 0 0 0 10 103 25 0 118 1 0 0
11 77 26 1 190 1 0 0 11 95 26 0 113 1 0 0
12 43 27 1 130 0 0 1 12 125 27 0 124 1 0 0
13 04 28 1 120 1 0 1 13 105 28 0 120 1 0 0
14 10 29 1 130 0 0 1 14 114 29 0 150 0 0 0
15 65 30 1 142 1 0 0 15 99 30 0 107 0 0 1
16 56 31 1 102 1 0 0 16 126 31 0 215 1 0 0
17 22 32 1 105 1 0 0 17 106 32 0 121 0 0 0
;
run;

proc logistic data = LBW descending;
 strata pairid;
 model low = LWT;
run;
##                                     Lowbirth Example - 1:1 matching
## 
##                                          The LOGISTIC Procedure
##  
##                                           Conditional Analysis
## 
##                                            Model Information
## 
##                            Data Set                      WORK.LBW            
##                            Response Variable             Low                 
##                            Number of Response Levels     2                   
##                            Number of Strata              17                  
##                            Model                         binary logit        
##                            Optimization Technique        Newton-Raphson ridge
## 
## 
##                                 Number of Observations Read          34
##                                 Number of Observations Used          34
## 
## 
##                                             Response Profile
##  
##                                    Ordered                      Total
##                                      Value          Low     Frequency
## 
##                                          1            1            17
##                                          2            0            17
## 
##                                      Probability modeled is Low=1.
## 
## 
##                                              Strata Summary
##  
##                                             Low
##                               Response    ------    Number of
##                                Pattern    1    0       Strata    Frequency
## 
##                                      1    1    1           17           34
## 
##                                    Newton-Raphson Ridge Optimization
## 
##                                        Without Parameter Scaling
## 
##                              Convergence criterion (GCONV=1E-8) satisfied.          
## 
## 
##                                          Model Fit Statistics
##  
##                                                  Without           With
##                                 Criterion     Covariates     Covariates
## 
##                                 AIC               23.567         25.347
##                                 SC                23.567         26.873
##                                 -2 Log L          23.567         23.347
## 
## 
##                                 Testing Global Null Hypothesis: BETA=0
##  
##                         Test                 Chi-Square       DF     Pr > ChiSq
## 
##                         Likelihood Ratio         0.2199        1         0.6391
##                         Score                    0.2180        1         0.6405
##                         Wald                     0.2143        1         0.6435
## 
## 
##                          Analysis of Conditional Maximum Likelihood Estimates
##  
##                                                  Standard          Wald
##                   Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq
## 
##                   LWT           1    -0.00528      0.0114        0.2143        0.6435
## 
## 
##                                           Odds Ratio Estimates
##                                                     
##                                             Point          95% Wald
##                                Effect    Estimate      Confidence Limits
## 
##                                LWT          0.995       0.973       1.017