The notes for the topics on this page can be found in the lecture 3 folder on Canvas.
The prop_test
function in the catfun package provides both approximated confidence intervals and exact confidence intervals for single proportions. For more information run ?prop_test
in the R console. Another possible function is BinomCI()
in the DescTools package.
library(catfun)
prop_test(2, 6, method = "wald", conf.level = .95)
## 2 out of 6, null probability = 0.5
## ----------------------------------------
## Observed proportion: 0.3333
## Confidence interval method: wald
## Confidence interval: 0 0.7105286
##
## Exact limits: 0.04327187 0.7772219
##
## Test that 0.3333 = 0.5
## ----------------------------------------
## Chi-squared: 0.6666667
## Degrees freedom: 1
## p-value: 0.41422
To create confidence intervals for a single proportion in SAS use the frequency procedure.
The syntax is:
proc freq data = <dataset>;
table <variable name> / binomial(p = <null value>) alpha = <alpha level>;
weight <weighting variable if summary data>;
run;
The following example tests if the proportion 0.33 (2/6) is equal to 0.5 in the population. Because this is summary level data, we include a weight statement and indicate that the variable loss contains the counts.
data followup1;
input loss;
cards;
2
4
;
run;
title 'Loss to Follow-up Exact CI Example';
proc freq data = followup1 order = data;
table loss / binomial(p = 0.5) alpha = 0.05;
weight loss;
run;
## Loss to Follow-up Exact CI Example
##
## The FREQ Procedure
##
## Cumulative Cumulative
## loss Frequency Percent Frequency Percent
## ---------------------------------------------------------
## 2 2 33.33 2 33.33
## 4 4 66.67 6 100.00
##
##
## Binomial Proportion
## loss = 2
##
## Proportion 0.3333
## ASE 0.1925
## 95% Lower Conf Limit 0.0000
## 95% Upper Conf Limit 0.7105
##
## Exact Conf Limits
## 95% Lower Conf Limit 0.0433
## 95% Upper Conf Limit 0.7772
##
## Test of H0: Proportion = 0.5
##
## ASE under H0 0.2041
## Z -0.8165
## One-sided Pr < Z 0.2071
## Two-sided Pr > |Z| 0.4142
##
## Sample Size = 6